
Parallel Access of Dense Extendible Arrays

Ekow Otoo and Doron Rotem

Lawrence Berkeley National Laboratory

Otoo & Doron Access of Dense Ext. Array



Introduction

Outline

1 Introduction

2 Problem Statement

3 Mapping Function

4 Disk Resident Extendible Arrays

5 Parallel Access of Disk Resident Extendible Array

6 Future Work Plans

Otoo & Doron Access of Dense Ext. Array



Problem Statement

Problem Statement

Problem:
An allocation of a multidimensional array in a parallel file
system such that:

any dimension is allowed to expand.
parallel applications read/write/manipulate entire array or
sub-arrays
array can be extended without reorganizing previously
allocated elements,
define a mapping function and its inverse for element
access.

Data types: integers, floats, double and complex types.

Otoo & Doron Access of Dense Ext. Array



Problem Statement

Illustration of an Extendible Array

A 2-D array initially defined as A[3][3] and then extended by by 2
columns, then by 1 row, followed by 1 column and so on.

3

2

1

0

0 2 4 51 3 6

0 1 2

3 4 5

6 7 8 11

10

9

14

13

12

15 16 17 18 19

20

21

22

23

24

25

26

27

The labels in the cells are location addresses of the elements.

An element A〈2,5〉 maps to location 22

The address calculation is done by a function denoted as:
F∗(i0, i1, . . . , ik−1)→ I
and an inverse F−1

∗ (I)→ 〈i0, i1, . . . , ik−1〉

Otoo & Doron Access of Dense Ext. Array



Mapping Function

Linear Mapping for an Extendible Array

−1,−1,[0,0],s

0,0,[3,1],s

3,9,[1,3],s 5,20,[1,4],s

3,15,[5,1],s 1

1

0

0 2Axial−Vectors

First Storage Location Pointer

Multiplying Coefficients

Starting Address of Segment

First Index of Segment

3

2

1

0

0 2 4 51 3 6

1 2

3 4 5

6 7 8 11

10

14

13

12

16 17 18 19

21

22

23

24

25

26

27

200

15

9

The element A〈2,5〉 is located in either segment of row 2 with
start address 0 or segment of column 5 with start address 20.

It is always allocated in segment with maximum starting address.

The address of A〈2,5〉 is computed by the algorithm F∗().

Otoo & Doron Access of Dense Ext. Array



Mapping Function

Linear Mapping for an Extendible Array

−1,−1,[0,0],s

0,0,[3,1],s

3,9,[1,3],s 5,20,[1,4],s

3,15,[5,1],s 1

1

0

0 2Axial−Vectors

First Storage Location Pointer

Multiplying Coefficients

Starting Address of Segment

First Index of Segment

3

2

1

0

0 2 4 51 3 6

1 2

3 4 5

6 7 8 11

10

14

13

12

16 17 18 19

21

22

23

24

25

26

27

200

15

9

The element A〈2,5〉 is located in either segment of row 2 with
start address 0 or segment of column 5 with start address 20.

It is always allocated in segment with maximum starting address.

The address of A〈2,5〉 is computed by the algorithm F∗().

Otoo & Doron Access of Dense Ext. Array



Mapping Function

Comparison of File Element Access Cost

 0

 1

 2

 3

 4

 5

4-Dim3-Dim2-Dim

E
le

m
en

t A
cc

es
s 

T
im

e 
(m

ic
ro

 s
ec

)

3.14
3.47

3.10

3.64

3.18

3.87

Conventional Array Function
Extendible Array Function

Otoo & Doron Access of Dense Ext. Array



Disk Resident Extendible Arrays

Disk Resident Extendible Arrays

The elements are first grouped into chunks of some
predefined Chunk-Shape, A[I0][I1] . . .A[Ik−1]

The chunks form the units of transfer between memory and
a parallel file system.
The mapping functions discussed are now applied to
address the chunks and the array elements within a chunk
can now be accessed using conventional array element
address calculation.
The Axial-Vectors are retained in a Meta-Data file but read
into memory at each session.
Additional information in the Meta-Data include the bounds
of the array, the chunk-shapes, etc.

Otoo & Doron Access of Dense Ext. Array



Disk Resident Extendible Arrays

Disk Resident Extendible Arrays

The elements are first grouped into chunks of some
predefined Chunk-Shape, A[I0][I1] . . .A[Ik−1]
The chunks form the units of transfer between memory and
a parallel file system.
The mapping functions discussed are now applied to
address the chunks and the array elements within a chunk
can now be accessed using conventional array element
address calculation.

The Axial-Vectors are retained in a Meta-Data file but read
into memory at each session.
Additional information in the Meta-Data include the bounds
of the array, the chunk-shapes, etc.

Otoo & Doron Access of Dense Ext. Array



Disk Resident Extendible Arrays

Disk Resident Extendible Arrays

The elements are first grouped into chunks of some
predefined Chunk-Shape, A[I0][I1] . . .A[Ik−1]
The chunks form the units of transfer between memory and
a parallel file system.
The mapping functions discussed are now applied to
address the chunks and the array elements within a chunk
can now be accessed using conventional array element
address calculation.
The Axial-Vectors are retained in a Meta-Data file but read
into memory at each session.
Additional information in the Meta-Data include the bounds
of the array, the chunk-shapes, etc.

Otoo & Doron Access of Dense Ext. Array



Parallel Access of Disk Resident Extendible Array

The Allocation Scheme

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

������
������
������

������
������
������

������
������
������

������
������
������

������
������
������

������
������
������

��
��
��

��
��
��

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����

����
����
����

�������
�������
�������

�������
�������
�������

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

Processor

Buffer/Cache

Global 

Subarray

0 1

2 3

4 5

6

10

7

8

9 11

12

13

14

15

16 17 18 19

P0 P1

P2 P3

P0 P1 P2 P3

0 1 18 19

Layout of Array Chunks in a File

Partitined into

4 zones for the 

4 processors

1 2 3

0 4 51 2 3 7 8 9 106

0

11
0

1

2

3

4

5

9

8

7

6

{

{

{

{

{

0

1

2

3

4

0 1 2 3 4 5 0 1 2 3 4 0 1 2 05

Principal Array

F

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

0 1 2

3 54

Otoo & Doron Access of Dense Ext. Array



Parallel Access of Disk Resident Extendible Array

Accessing Extendible Arrays (The pDRXA Library)

Array is distributed by Block, Block partitioning scheme and
along chunk boundaries. Block-Cyclic partitioning not yet

A process controls a region of sub-array called a zone and an
application can sub-arrays with either independent or collective
I/O.

Each process then makes its zone accessible by creating a
memory window for RMA access.

Since each process has all the distribution information, it can
access an element locally, if it controls the zone of the element;
otherwise it accesses the element remotely via functions like
MPI_Get(), MPI_Put() and MPI_Accumulate(), etc.

The processing model is consistent with the Global-Array toolkit
model for parallel processing of arrays.

The idea then is to define the access functions to be consistent
with the Disk Resident Array library of GA and leverage the
scientific processing capability of GA.

Otoo & Doron Access of Dense Ext. Array



Parallel Access of Disk Resident Extendible Array

Accessing Extendible Arrays (The pDRXA Library)

Array is distributed by Block, Block partitioning scheme and
along chunk boundaries. Block-Cyclic partitioning not yet

A process controls a region of sub-array called a zone and an
application can sub-arrays with either independent or collective
I/O.

Each process then makes its zone accessible by creating a
memory window for RMA access.

Since each process has all the distribution information, it can
access an element locally, if it controls the zone of the element;
otherwise it accesses the element remotely via functions like
MPI_Get(), MPI_Put() and MPI_Accumulate(), etc.

The processing model is consistent with the Global-Array toolkit
model for parallel processing of arrays.

The idea then is to define the access functions to be consistent
with the Disk Resident Array library of GA and leverage the
scientific processing capability of GA.

Otoo & Doron Access of Dense Ext. Array



Parallel Access of Disk Resident Extendible Array

Accessing Extendible Arrays (The pDRXA Library)

Array is distributed by Block, Block partitioning scheme and
along chunk boundaries. Block-Cyclic partitioning not yet

A process controls a region of sub-array called a zone and an
application can sub-arrays with either independent or collective
I/O.

Each process then makes its zone accessible by creating a
memory window for RMA access.

Since each process has all the distribution information, it can
access an element locally, if it controls the zone of the element;
otherwise it accesses the element remotely via functions like
MPI_Get(), MPI_Put() and MPI_Accumulate(), etc.

The processing model is consistent with the Global-Array toolkit
model for parallel processing of arrays.

The idea then is to define the access functions to be consistent
with the Disk Resident Array library of GA and leverage the
scientific processing capability of GA.

Otoo & Doron Access of Dense Ext. Array



Future Work Plans

Future Work Plans

There are a number of popular and established standard
array oriented file formats that the methods can be used to
support.

HDF4/HDF5 and their derivatives - HDF5-EOS, HDF5-Lite.
HDF5 allows extendibility in any dimension using data
chunking and manages the chunks using a B-Tree index.
The B-Tree index can be replaced with DRXA access
schemes

DRA is the persistent storage for GA and we mimic its
access methods in pDRXA.
An API of pDRXA consistent with those of DRA should
make it accessible to any application that uses GA.
NetCDF {NCAR} and parallel NetCDF {SDM Center} can
utilize pDRXA access functions without reliance on HDF5

Otoo & Doron Access of Dense Ext. Array



Future Work Plans

Future Work Plans

There are a number of popular and established standard
array oriented file formats that the methods can be used to
support.

HDF4/HDF5 and their derivatives - HDF5-EOS, HDF5-Lite.
HDF5 allows extendibility in any dimension using data
chunking and manages the chunks using a B-Tree index.
The B-Tree index can be replaced with DRXA access
schemes

DRA is the persistent storage for GA and we mimic its
access methods in pDRXA.
An API of pDRXA consistent with those of DRA should
make it accessible to any application that uses GA.

NetCDF {NCAR} and parallel NetCDF {SDM Center} can
utilize pDRXA access functions without reliance on HDF5

Otoo & Doron Access of Dense Ext. Array



Future Work Plans

Future Work Plans

There are a number of popular and established standard
array oriented file formats that the methods can be used to
support.

HDF4/HDF5 and their derivatives - HDF5-EOS, HDF5-Lite.
HDF5 allows extendibility in any dimension using data
chunking and manages the chunks using a B-Tree index.
The B-Tree index can be replaced with DRXA access
schemes

DRA is the persistent storage for GA and we mimic its
access methods in pDRXA.
An API of pDRXA consistent with those of DRA should
make it accessible to any application that uses GA.
NetCDF {NCAR} and parallel NetCDF {SDM Center} can
utilize pDRXA access functions without reliance on HDF5

Otoo & Doron Access of Dense Ext. Array


	Introduction
	Problem Statement
	Mapping Function
	Disk Resident Extendible Arrays
	Parallel Access of Disk Resident Extendible Array
	Future Work Plans

